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Revenue comparisons for auctions
when bidders have arbitrary types

YEON-KOO CHE

Departments of Economics, Columbia University and University of Wisconsin–Madison

IAN GALE

Department of Economics, Georgetown University

This paper develops a methodology for characterizing expected revenue from
auctions when bidders’ types come from an arbitrary distribution. In particu-
lar, types may be multidimensional, and there may be mass points in the distri-
bution. One application extends existing revenue equivalence results. Another
application shows that first-price auctions yield higher expected revenue than
second-price auctions when bidders are risk averse and face financial constraints.
This revenue ranking extends to risk-averse bidders with general forms of non-
expected utility preferences.
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1. INTRODUCTION

This paper develops a methodology for characterizing expected revenue from auctions
in which bidders’ types come from an arbitrary distribution. In particular, types may be
multidimensional, and there may be mass points in the distribution. Accommodating
multidimensional types is valuable because actual bidders may differ along many di-
mensions such as their risk attitudes and aspects of the financial constraints they face
(e.g., cash holdings, sizes of credit lines, and terms of credit). Likewise, atoms may be
relevant if there is positive probability that bidders will not participate, for example.

Most auction models assume a one-dimensional type space with an atomless dis-
tribution. The well-known revenue-equivalence results concern risk-neutral bidders
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who differ only in their valuations of the good (see Myerson 1981 or Riley and Samuel-
son 1981, for example). Likewise, a typical model with risk aversion assumes that bid-
ders have the same von Neumann-Morgenstern utility function, so they again differ
only in their valuations (see Holt 1980, Matthews 1983, 1987 and Riley and Samuelson
1981). When bidders are completely ordered by their valuations, which are drawn from
the same distribution, standard auctions yield an efficient allocation in equilibrium.1

Hence, revenues from these auctions can be compared easily if the rents accruing to
each valuation type can be compared. While this approach works in standard models
with risk-neutral or risk-averse bidders, such a comparison does not work if the auctions
entail different equilibrium allocations.

Suppose that bidders differ along multiple dimensions—their valuations and risk
attitudes, say. If risk attitudes do not affect bidding behavior in a second-price auction,
but do in a first-price auction, then the equilibrium allocations differ, making the exist-
ing methodology inapplicable. Similarly, when there are atoms in the distribution, the
standard revenue equivalence argument is difficult to apply; in many cases, it does not
apply.

We develop a method for characterizing equilibrium revenue in such cases. To il-
lustrate, fix an auction form (a first- or second-price sealed-bid auction, say) with n ≥ 2
bidders, and suppose that a symmetric equilibrium exists. Now imagine a fictitious risk-
neutral bidder with valuation v and no financial constraints; she is henceforth referred
to as the benchmark bidder or a type-v bidder. Suppose that the benchmark bidder were
to participate in an auction with n −1 actual bidders who each employ the equilibrium
bidding strategy. Now assign to each equilibrium bid a benchmark type having that bid
as a best response (or some nearby type if no such type exists). This generates a cumu-
lative distribution function (cdf), FM , of benchmark types whose best responses mimic
the actual equilibrium bidding behavior. We show that the revenue from the actual equi-
librium is no less than the revenue generated when n risk-neutral bidders with valua-
tions drawn from FM play the same auction game. This lower bound for the revenue
from the actual auction can be calculated from FM , using a standard envelope theorem
argument. An exact representation is available if two additional conditions are satisfied.
Ultimately, our methodology reduces the task of comparing revenues from alternative
auctions to that of comparing induced distributions of benchmark types.2

We present two applications of the methodology. First, we establish revenue equiv-
alence for standard auctions when bidders are risk-neutral and face no financial con-
straints. In particular, our method establishes revenue equivalence for discrete types
in a much broader class of auction forms than has been shown previously.3 (Our re-

1Incentive compatibility makes equilibrium bidding strategies monotonic in valuations in standard auc-
tions, which means that the allocation is efficient in all such auctions.

2The current method can be seen as aggregating the arbitrary type into a one-dimensional type. This
aggregation method differs from other methods such as the one used for analyzing score-based auctions
(see Che 1993 and Asker and Cantillon 2003). This latter method applies to quasilinear preferences; the
current method applies to general preferences.

3Maskin and Riley (1985) and Riley (1989) demonstrate that revenue equivalence holds between sealed-
bid auctions and open oral auctions when types are discrete.
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sults apply to continuous and mixed distributions as well.) In the process, we identify
the properties of auction forms that produce revenue equivalence. Second, we apply
the methodology to generalize the result that a first-price sealed-bid auction generates
higher expected revenue than does a second-price sealed-bid auction when bidders are
risk-averse expected-utility maximizers and face financial constraints. The results here
allow for arbitrary heterogeneity in both dimensions. The third application shows that
the results hold for a broad class of non-expected utility preferences. In particular, they
are shown using the Gateaux differentiable preference functional, which includes es-
sentially all (possibly non-expected utility) preference functionals satisfying a minimal
smoothness requirement.

The current model encompasses virtually all existing models that incorporate risk
aversion or financial constraints. In particular, it significantly generalizes Che and Gale
(1998), which considered risk-neutral bidders with private information about their valu-
ations and (one-dimensional) financial constraints.4 In addition to limiting attention to
two-dimensional private information, the earlier paper relied crucially on the assump-
tion that, for every equilibrium bid, there was an unconstrained type that would make
that bid.5 No such assumption is needed here.

The remainder of the paper is organized as follows. Section 2 contains the revenue
characterization for general auction forms and general payoffs. Section 3 presents the
three applications mentioned above. Section 4 concludes.

2. REVENUE CHARACTERIZATION

A seller is holding an auction for a single object. There are n ≥ 2 bidders whose types
(i.e., preferences and constraints) are independently and identically distributed. We
make no additional assumptions about bidders’ types at this point. Instead, we sim-
ply assume that the auction has a symmetric Bayesian-Nash equilibrium that yields a
finite expected revenue for the seller. We study a class of auction forms that satisfy some
natural conditions: every bidder makes a single bid in R+, the high bid wins, bidders’
payments are functions of the bids, and bidders are treated symmetrically. These con-
ditions are satisfied by first- and second-price sealed-bid auctions, as well as all-pay
auctions and wars of attrition, among others.

Fix a symmetric equilibrium, which we denote “M .”6 Let BM be the random variable

4Che and Gale also assumed that the cost function was submodular in the bidder’s payment and budget
parameter. In addition, they assumed that the distribution of types was continuous and the support of
equilibrium bids had no mass points or gaps. The current paper uses a different approach, which does not
require these features.

5This assumption is not satisfied if some equilibrium bids are so unattractive that only financially con-
strained types would choose them. Fang and Perreiras (2001) have shown that this possibility cannot be
avoided in certain cases. They considered bidders facing absolute financial constraints, with the infimum
budget strictly larger than the infimum valuation.

6Our revenue characterization in this section does not even require M to be an equilibrium. It only
requires the profile of strategies to be symmetric. We assume an equilibrium since all subsequent applica-
tions will indeed require bidders to play their equilibrium strategies.
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representing the bid made by an individual bidder in that equilibrium, and let

BM := {b ∈R | Pr{BM ∈ [b ,b +ε)}> 0 and Pr{BM ∈ (b −ε,b ]}> 0∀ε> 0}

be its (measurable) support.7

Let xM (b ) and tM (b ) denote an individual bidder’s probability of winning and his
expected payment, respectively, if he bids b ∈ R+ and all n − 1 others employ the equi-
librium strategy.

Now imagine a benchmark bidder (i.e., a risk-neutral bidder who faces no finan-
cial constraints) bidding against n − 1 actual bidders who each employ the equilibrium
strategy. We will construct a distribution of benchmark types such that the resulting dis-
tribution of best responses mimics the equilibrium bid distribution, BM . We then char-
acterize the seller’s expected revenue using this constructed distribution of benchmark
types.

Suppose that a benchmark bidder with valuation v ∈V := [0,∞)were to bid b ∈R+.
She would receive an expected payoff of πM (b , v ) := v xM (b )− tM (b ). The supremum
payoff for the type-v benchmark bidder is

ΠM (v ) := sup
b∈R+

πM (b , v ). (1)

Let
BRM (v ) := arg max

b ′∈R+
πM (b ′, v )

denote the set of best responses, which may be empty for a given v . Now let (XM (v ),
TM (v )) be a limit point of (xM (b ), tM (b )) along a sequence of b that yields ΠM (v ) in the
limit.8 We then have ΠM (v ) = v XM (v )−TM (v ).

For each v ∈ V , let βM (v ) := BRM (v )∩BM denote the set of best responses that are
also equilibrium bids. We first show that βM is a monotonic correspondence.

LEMMA 1. Suppose that b ′ ∈ βM (v ′) and b ∈ βM (v ) for v , v ′ ∈ V with v ′ > v . Then,
b ′ ≥b .

PROOF. Incentive compatibility implies that a type-v benchmark bidder weakly prefers
b to b ′, while a type v ′ does the reverse. Combining these two conditions yields

(v ′−v )[xM (b ′)−xM (b )]≥ 0.

Since v ′ > v , we immediately have xM (b ′) ≥ xM (b ). Now suppose that b ′ < b . Since b ′,
b ∈BM , we have xM (b ′)< xM (b ), which is a contradiction.9 We conclude that b ′ ≥b . �

7This definition of the support differs from other possible definitions only for measure-zero sets; it sim-
plifies the proofs of Lemmas 1 and 2.

8The limit point, (XM (v ), TM (v )), is well defined. Let {b n }∞n=1 be a sequence such that ΠM (v ) =
limn→∞{v xM (b n ) − tM (b n )}. Then, since x (b n ) lies in [0, 1], a compact set, there exists a subsequence
{b kn }∞n=1 such that xM (b kn ) converges to XM (v ), say, as n →∞. Then, tM (b kn )must converge to v XM (v )−
ΠM (v ) =: TM (v ) as n→∞.

9This follows from the definition ofBM .
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We next construct a random variable, VM , representing the benchmark bidder’s type.
This is done in such a way that the resulting distribution of best responses mimics BM .
The first step is to define a function, φM : BM 7→ V , mapping equilibrium bids into
benchmark types. For each b ∈βM (V ),10 let

φM (b ) := v such that b ∈βM (v ).

(If there are multiple candidates for a given b , select one of them.11) For each b ∈BM \
βM (V ), let

φM (b ) :=

(

inf{φM (b ′) |b ′ ∈βM (V )∩ (b ,∞)} if βM (V )∩ (b ,∞) 6= ;
sup{φM (b ′) |b ′ ∈βM (V )∩ [0,b )} if βM (V )∩ (b ,∞) = ;.

In words, φM assigns to each equilibrium bid a benchmark type having b as a best re-
sponse, if such a type exists; to any remaining equilibrium bid it assigns the infimum
type with a best response exceeding b in BM (or the supremum type with a best re-
sponse less than b , if none exists). This mapping is well defined when the former types
exist (i.e., βM (V ) 6= ;); existence is verified in the applications below. Lemma 1 implies
that φM is nondecreasing. Hence, the inverse correspondence, φ−1

M (v ) := {b ∈ BM |
φM (b ) = v }, is strictly increasing in v over its range, VM :=φM (BM ).

The assigned benchmark type, VM := φM (BM ), is then distributed according to the
cdf

FM (v ) := Pr{φM (BM )≤ v }. (2)

Clearly, FM is nondecreasing and right-continuous. The range ofφM , VM , is the support
of FM .

Suppose, hypothetically, that n risk-neutral bidders were to draw valuations accord-
ing to FM and bid according to φ−1

M . (In particular, a bidder with valuation v would
bid in a way that matches the conditional distribution of BM in φ−1

M (v ).) This scenario
would replicate the equilibrium bidding behavior in the original equilibrium, M , and
would yield the same revenue. We can therefore focus on the revenue generated in this
scenario.

Now fix a type, v ∈VM . For each bid b ∈φ−1
M (v ),

ΠM (v )≥ v xM (b )− tM (b ), (3)

since the bid need not be a best response. If b ∈βM (v ), however, it is a best response for
a type v , so (3) becomes an equality. In fact, (3) holds with equality for all v ∈ VM if the
set of best responses contains every equilibrium bid:

CONDITION (A1). BM =βM (V ).

10Throughout, a function or correspondence defined over a set connotes the range of the function or
correspondence over that set. For instance, βM (V ) :=

⋃

v ′∈V
βM (v ′).

11We constructφM precisely in subsequent applications.
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When this condition holds, every b ∈ φ−1
M (v ) is a best response for v , for all v ∈ VM (by

construction ofφM ), ensuring that (3) holds with equality for all v ∈VM . Condition (A1)
is satisfied in a second-price auction since any bid b is a best response for a benchmark
bidder of type v = b . When Condition (A1) holds, we are able to get an exact revenue
representation. If it does not hold, we get a lower bound on revenue, based on (3).

We now characterize ΠM (v ), using FM (v ). By definition,

ΠM (v ) = v XM (v )−TM (v )≥ v XM (v ′)−TM (v ′)

for all v ′ ∈ V . An envelope theorem argument (see Theorem 2 of Milgrom and Segal
2002) then yields

ΠM (v ) =ΠM (0)+

∫ v

0

XM (s )d s . (4)

The supremum payoff can be characterized in terms of FM if an additional condition is
satisfied:

CONDITION (A2). XM (v ) = FM (v )n−1 for almost every v ∈V .

Given this condition, the probability that a type-v benchmark bidder wins is equal to
the probability that an actual bidder bids weakly less than a type v ’s best response. The
possibility of mass points in the equilibrium bid, BM , and the associated (random) tie-
breaking, make this condition nontrivial. Even with mass points, however, (A2) holds in
equilibria of first- and second-price auctions, but it may not hold in other auctions.12

When (A2) holds, the expected payoff in (4) takes the form seen in symmetric indepen-
dent private values (IPV) auctions.

Let V (i )M denote the i t h order statistic of n random variables with cdf FM (i.e., the i t h

highest of n realizations of VM ). We are now able to characterize the expected revenue.

THEOREM 1. Suppose that (A2) holds. The seller’s expected revenue from auction equi-
librium M is greater than or equal to E[V (2)M ]−nΠM (0). If (A1) also holds, the expected

revenue equals E[V (2)M ]−nΠM (0).

PROOF. The seller’s expected revenue from auction equilibrium M is given by:

nEBM [tM (BM )] = nEVM

�

EBM

�

tM (BM )
�

� BM ∈φ−1
M (VM )
��

≥ nEVM

�

EBM

�

VM xM (BM )−ΠM (VM )
�

� BM ∈φ−1
M (VM )
��

= nEVM

�

EBM

�

VM xM (BM )
�

� BM ∈φ−1
M (VM )
��

−nEVM [ΠM (VM )]

=EVM

h

V (1)M

i

−nEVM [ΠM (VM )]

=EVM

h

V (1)M

i

−nEVM





∫ VM

0

FM (v )n−1d v



−nΠM (0)

=EVM

h

V (2)M

i

−nΠM (0). (5)

12An example in Section 3.1 shows that it may not be satisfied in a third-price auction.
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The first equality follows from the equivalence of the bids generated by the original equi-
librium, M , and the bids generated in the scenario in which n risk-neutral bidders draw
valuations, VM , and bid according to φ−1

M (VM ). The inequality follows from (3). The
third equality follows since nEVM

�

EBM

�

VM xM (BM )
�

� BM ∈φ−1
M (VM )
��

equals the aggre-
gate gross surplus accruing to the n risk-neutral bidders in the hypothetical scenario.
Since the correspondence φ−1

M (·) is strictly increasing, a bidder with a higher valuation
bids strictly higher than a bidder with a lower valuation in that scenario. Hence, the good
is allocated efficiently among the n risk-neutral bidders, implying that the gross surplus
equals the expectation of the first order statistic of VM . The second-to-last equality fol-
lows from (4) and (A2). The last equality follows from integration by parts.

The second statement holds since (A1) implies that, for each v ∈ VM , b ∈ φ−1(v )
means b ∈ βM (v ), so the inequality in (3) is an equality for all v ∈ VM , making the in-
equality in (5) an equality. �

3. REVENUE COMPARISONS OF AUCTIONS

This section uses Theorem 1 to compare the expected revenues from different auction
forms. We first impose some structure on bidders’ types and preferences, the features
that ultimately generate the random variable BM . Suppose that each bidder i has a type,
θi , drawn from an arbitrary, compact, non-empty support, Θ. Types are independently
and identically distributed across bidders, and each bidder’s preferences depend only
on his type, which is his private information. The next two subsections compare ex-
pected revenue across standard auctions. First, we consider risk-neutral bidders with-
out financial constraints and provide a generalized revenue-equivalence result. We then
show that first-price auctions yield greater expected revenue than second-price auctions
when risk aversion and financial constraints are present.

3.1 Risk neutral bidders without financial constraints

Many auction forms yield the same expected revenue when bidders are risk neutral and
ex ante identical. Revenue equivalence results in the IPV setting typically depend on
assumptions such as connectedness or absolute continuity of the distribution of types
(see Myerson 1981 or Riley and Samuelson 1981, for example). Maskin and Riley (1985)
and Riley (1989) extend the revenue equivalence between first-price sealed-bid auctions
and oral ascending (or second-price sealed-bid) auctions to discrete types. Theorem 1
enables us to generalize those results for arbitrary type distributions. In the process, we
identify features that make revenue equivalence possible.

Let a bidder of type θ ∈ Θ have a valuation θ .13 A bidder’s valuation has a nonde-
creasing and right-continuous cdf, F :Θ 7→ [0, 1], which may have mass points and gaps.
As above, a bid b wins with some probability xM (b ) in equilibrium M and entails an ex-
pected payment tM (b ). Given risk neutrality and no financial constraints, a bidder with
valuation θ receives an expected payoff of θxM (b )− tM (b )when bidding b .

13Without loss of generality we assume Θ⊂R+ here. If actual valuations are a function of multiple com-
ponents, what ultimately matters is just the value of that function.
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We again consider auctions in which the high bid wins and the bidders are treated
symmetrically (ties are broken randomly). In addition, we assume that a bidder’s pay-
ment depends only on his own bid and the highest competing bid. Formally, bidder i ’s
payment is τw (b i ,bm (i )) ∈ R+ if he wins and τl (b i ,bm (i )) ∈ R+ if he loses, where b i and
bm (i ) :=maxj 6=i b j denote bidder i ’s bid and the highest competing bid, respectively.14

(Since the high bidder wins, τw is defined for b i ≥bm (i ) and τl is defined for b i ≤bm (i ).)
An auction form that satisfies these conditions is called a standard auction. A standard
auction displays continuous payments if the following conditions hold:

τw (0, 0) =τl (0, ·) = 0 and τk (·,bm (i )) is continuous for k =w , l , in the relevant domain.

Many familiar auction forms have all of these features: In a first-price auction, the
winner pays τw (b i ,bm (i )) = b i and a loser pays τl (b i ,bm (i )) = 0; in a second-price auc-
tion, τw (b i ,bm (i )) = bm (i ) and τl (b i ,bm (i )) = 0; in an all-pay auction, τw (b i ,bm (i )) = b i

and τl (b i ,bm (i )) = b i ; and in a war of attrition, τw (b i ,bm (i )) = bm (i ) and τl (b i ,bm (i )) =
b i . Many other auctions forms are allowed. For instance, nothing in the definition pre-
cludes non-monotonic portions in the payment functions.

The restriction to standard auctions is appealing, but it does preclude mechanisms
such as third-price auctions.15 The role of the various conditions is made precise later.

We now demonstrate revenue equivalence for symmetric equilibria of standard auc-
tions with continuous payments.16 A preliminary result enumerates some useful prop-
erties of equilibria. Let δM (b ) := τw (b ,b )−τl (b ,b ) denote the difference between what
a winner and a loser pay when tying with a high bid of b .

LEMMA 2. Suppose that the bidders are risk neutral and face no financial constraints. A
symmetric equilibrium in a standard auction with continuous payments has the follow-
ing properties. (a) If BM has a mass point at b ∈BM , and if b ∈ βM (v ) for some v ∈ V ,
then v =δM (b ) and v ∈Θ. (b) For any v, v ′ ∈Θwith v < v ′, if b ∈βM (v ) and b ′ ∈βM (v ′),
then b <b ′.

The proofs of this result and of several subsequent results are in the Appendix.
The second part of the lemma means that a symmetric equilibrium of a standard

auction with continuous payments admits an efficient allocation. While efficiency of
IPV auctions is a familiar result, the result here is significant because the class of auction
forms considered is broad, and we allow for atoms in the distribution of types. The prop-
erty concerning mass points is crucial for efficiency and revenue equivalence. (Example
2 below shows that efficiency is not guaranteed in a third-price auction—which is not a

14The need to define two payment functions arises because ties may occur with non-zero probability,
and the bidder’s payment may depend on whether she wins or loses.

15The allowed payment functions also exclude strictly positive entry fees and reserve prices, but these
exclusions are more innocuous. The analysis can be extended to incorporate these features since the equi-
librium with a reserve price is observationally equivalent to our model with a particular cdf.

16Again, we assume existence of a symmetric equilibrium. Some auction forms with continuous payment
functions may fail to admit an equilibrium. For instance, the degenerate case of τw = τl := 0 produces
unbounded bids.
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standard auction—if there are mass points.) Let θ (2) denote the second order statistic of
n random variables with cdf F . We now present the revenue equivalence result.

PROPOSITION 1. Suppose that the bidders are risk neutral and face no financial con-
straints. A symmetric equilibrium of a standard auction with continuous payments yields
expected revenue of E[θ (2)].

PROOF. Fix a symmetric equilibrium. We first show that ΠM (0) = 0. The continuous
payments property implies that a bidder of type v = 0 can get a payoff of zero by bidding
zero. The payoff cannot be strictly positive, however, since payments are nonnegative,
so ΠM (0) = 0.

The next step is to pin down FM . To that end, we first construct φM . Condition (A1)
holds since βM (Θ) =BM . Hence, for each b ∈BM , we can set φM (b ) = v ∈Θ for v such
that b ∈ βM (v ). Such a v is unique since, by Lemma 2(b), any selection from βM (v ) is
strictly increasing in v for v ∈ Θ. Since an actual bidder with θ ∈ Θ chooses a bid in
βM (θ ) in equilibrium, and since φM picks v ∈ Θ for b ∈ βM (θ ), and such assignment is
unique, we must have θ =φM (BM ). Consequently,

FM (v ) = Pr{φM (BM )≤ v }= Pr{θ ≤ v }= F (v ) (6)

for every v ∈V .
The last step is to show that (A2) holds. By Lemma 2(b), any v ∈ Θ wins with prob-

ability F (v )n−1 unless F jumps at v . The set of valuations in Θ with mass points has
measure zero. Since F (v )n−1 = FM (v )n−1, we have XM (v ) = FM (v )n−1 for almost every
v ∈Θ. Hence, it now suffices to show that XM (v ) = FM (v )n−1 for each v ∈V \Θ.

Fix v ∈ V \Θ. Either XM (v ) = xM (b ) for some mass point b ∈ BM , or XM (v ) ∈
{F (ṽ−)n−1, F (ṽ )n−1} for some ṽ ∈ Θ, where F (ṽ−) denotes the left-hand limit of F at ṽ .
The former cannot be true; otherwise, Lemma 2(a) would imply v ∈ Θ, which contra-
dicts v ∈V \Θ. Hence, we conclude that XM (v )∈ {F (ṽ−)n−1, F (ṽ )n−1} for some ṽ ∈Θ.

It remains to show that XM (v ) = FM (v )n−1. This requires a preliminary step. Con-
sider an arbitrary v ′ ∈ Θ and some b ′ ∈ βM (v ′). Incentive compatibility for a type v
means

v XM (v )−TM (v ) = sup
b∈R+

πM (b , v )≥πM (b ′, v ) = v xM (b ′)− tM (b ′). (7)

For the type v ′, it implies

v ′xM (b ′)− tM (b ′) = sup
b∈R+

πM (b , v ′)≥ v ′XM (v )−TM (v ). (8)

Combining (7) and (8), we obtain

(v −v ′)[XM (v )−xM (b ′)]≥ 0. (9)

Suppose that XM (v ) 6= FM (v )n−1. If FM (v )n−1 < XM (v ) ≤ F (ṽ )n−1, there exists v ′ ∈
(v, ṽ )∩Θ, or elseΘ has a mass point at v ′ = ṽ and XM (v ) = F (ṽ )n−1. Either way, xM (b ′)<



104 Che and Gale Theoretical Economics 1 (2006)

XM (v ), for some b ′ ∈ βM (v ′).17 We thus have a contradiction to (9). If FM (v )n−1 >

XM (v ) ≥ F (ṽ−)n−1, there must exist v ′ ∈ (ṽ , v ) ∩Θ. Since F (ṽ )n−1 < xM (b ′) for all b ′ ∈
βM (v ′), given Lemma 2(b) and XM (v ) ≤ F (ṽ )n−1, we again have a contradiction to (9).
We conclude that XM (v ) = F (ṽ )n−1 = FM (v )n−1, proving that (A2) holds.

Since (A1) and (A2) hold, ΠM (0) = 0, and FM (·) = F (·), Theorem 1 indicates that the
expected revenue in a symmetric equilibrium of auction form M equals E[θ (2)]. �

In the usual case with an atomless distribution, the equilibrium allocation pins
down the rents for all types, up to a constant. The efficiency result in Lemma 2(b), along
with the property that the infimum type receives a payoff of zero, then yields revenue
equivalence.

It is important to note that equality of rents may not hold if the types are discrete. To
see why, consider a two-point support, Θ= {θ L ,θH }, and two auction equilibria, A and
B . Then, (4) implies that an actual bidder of type θH receives rents equal to

ΠM (θH ) =ΠM (θ L)+

∫ θH

θ L

XM (s )d s

in M = A, B . Now suppose that XA (θ ) = X B (θ ) for θ ∈ {θ L ,θH } (i.e., the equilibrium
allocation is the same for the actual types) and ΠA (θ L) = ΠB (θ L). The rents accruing to
a type θH may differ across auction equilibria if XA (v ) 6= X B (v ) for v ∈ (θ L ,θH ). In other
words, the incentives of benchmark types that are not actual types affect the calculation
of the equilibrium rents accruing to the actual types. One must therefore keep track
of the incentives of all benchmark types in order to compare revenue, even though the
actual types are discrete.

Revenue equivalence obtains in standard auctions with continuous types because
benchmark types have the same incentives across auction forms. In particular, a bench-
mark type does not mimic a neighboring actual type that is a mass point of the distribu-
tion (Lemma 2); this non-mimicking behavior implies that XM (v ) = F (v )n−1 for almost
every v , as required by Condition (A2). In fact, the restriction to standard auctions with
continuous payments is necessary for the revenue equivalence result, as is illustrated
next.

EXAMPLE 1 (Discontinuous payments). Suppose that n = 2 bidders draw valuations
from Θ = {1, 2} with probability 1

2 each. In a second-price auction, the allocation is
efficient since θ = 2 outbids θ = 1. Benchmark types with v ∈ {1, 2} have best responses
in the equilibrium support. Those with v ∈ (1, 2) would strictly outbid an actual bid-
der with θ = 1, implying Xs (v ) = 1

2 for these types. By Proposition 1, the seller receives
expected revenue of E[θ (2)] = 5

4 .

17In case of a mass point at v ′ = ṽ , the probability of winning is strictly less than F (ṽ+)n−1 if a type ṽ bids
b ′ ∈βM (ṽ ) (either because a tie occurs at b ′ with positive probability or because a mixed strategy is adopted
by the type ṽ in equilibrium), so the statement holds with v ′ = ṽ . If there is not a mass point at ṽ , there
exists v ′ ∈ (v, ṽ )∩Θ, and the statement follows from Lemma 2(b).
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Now consider an optimal auction (denoted “M =o”).18 It has τl := 0 and

τw (b i ,bm (i )) =







b i if b i ≤ 1
5
3 if b i ∈ (1, 2]

b i if b i > 2.

An actual bidder with θ = 1 bids 1 in the symmetric equilibrium, while a bidder with
θ = 2 bids 2, so the allocation is efficient. But, the seller’s expected revenue is 3

2 >
5
4 here,

so revenue equivalence fails even though the equilibrium allocation and the expected
payoff to the lowest type (θ = 1) are the same as in the second-price auction. This result
follows from the failure of the continuous payments property, as the winner’s payment
jumps up at b = 1 and again at b = 2.19 A benchmark bidder with valuation v ∈ (1, 2)
would not wish to outbid an actual bidder with θ = 1, so Xo(v ) = 1

4 <
1
2 = Fo(v ) for

v ∈ (1, 2), violating (A2). The rent accruing to an actual bidder with θ = 2 is therefore
smaller in the optimal auction, leading to higher revenue there. ◊

EXAMPLE 2 (Dependence on other bids). Suppose that there are n = 3 bidders with the
same two-point type distribution as in Example 1. In a second-price auction, the
second-highest bid is equally likely to be 1 or 2, so the seller’s expected revenue is 3

2 .

A benchmark type with v ∈ (1, 2)would submit a bid in (1, 2), so Xs (v ) = 1
4 = F (v )2.

Now consider a third-price auction (denoted “M = t ”); payments clearly depend
on bids other than the own bid and the highest competing bid. There is a continuum
of equilibria indexed by γ ∈ [3.5, 5]; for γ in this interval, it is symmetric equilibrium
behavior for each bidder to bid 1 if θ = 1 and to bid γ if θ = 2. The seller receives
γ if all three bidders have θ = 2, and 1 otherwise, so the expected revenue is γ+7

8 . In

particular, the equilibria with γ < 5 all yield expected revenue strictly less than 3
2 , so

revenue equivalence fails.
The revenue nonequivalence is again explained by the incentives of the benchmark

types in (1, 2). Consider the equilibrium in which an actual type θ = 2 bids x = 4. In
this equilibrium, benchmark types with v ∈ ( 7

4 , 11
5 ) would bid 4, just as the type θ = 2

would.20 Thus, X t (v ) = 7
12 >

1
4 = F (v )2 for v ∈ ( 7

4 , 2), again violating (A2). This time there
is more rent for the actual type θ = 2—and lower expected revenue for the seller—than
in the second-price auction.

Modifying this example also shows that efficiency is not guaranteed in a third-price
auction. Suppose that three bidders each have a valuation drawn from Θ= {1, 2−ε, 2+
ε} with probabilities 1

2 , 1
4 , and 1

4 , respectively. The above argument implies that there
is a symmetric equilibrium in which actual bidders with θ = 2− ε and θ = 2+ ε bid
4, for sufficiently small ε > 0. Given random tie-breaking, this pooling produces an

18It is straightforward to confirm directly that this auction implements the optimal mechanism.
19While xo (b ) jumps from 1

4
to 1

2
when b exceeds 1, τw also jumps, from 1 to 5

3
.

20The expected payoff is 1
4
(v − 1), 1

12
(7v − 10), or v − 7

4
when bidding b ∈ (1, 4), b = 4, or b ∈ (4,∞),

respectively. Benchmark types v ∈ (1, 7
4
), v ∈ ( 7

4
, 11

5
), and v ∈ ( 11

5
,∞), strictly prefer the first, second, and

third alternatives, respectively.
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inefficient allocation with positive probability, which confirms that Lemma 2(b) relies
on the dependence on just the two bids. ◊

3.2 Bidders with risk aversion and financial constraints

We next compare the expected revenue from first- and second-price auctions when
bidders’ payoffs are strictly concave in the payments they make. Risk aversion and fi-
nancial constraints constitute two possible sources of concavity. Risk aversion has long
been considered an important determinant of bidder behavior in the theoretical and ex-
perimental literatures.21 The importance of financial constraints, which arise when the
marginal cost of expenditure is increasing, has been recognized in a growing literature.22

Suppose that each bidder i has a type drawn independently and identically from a
nonempty, measurable set,Θ. A bidder of type θ gets von Neumann-Morgenstern utility
of u (x ;θ ) if he wins the object and pays x ∈R+. He receives utility of zero if he does not
win. We make two assumptions concerning the utility function:

(U1) For each θ ∈Θ, u (·;θ ) is continuous, strictly decreasing and (weakly) concave.

(U2) For each θ ∈ Θ, u (0;θ ) ≥ 0, with u (0;θ ) > 0 for a set with positive measure. Con-
versely, there exists K > 0 such that u (K ,θ )< 0 for all θ ∈Θ.

The concavity requirement of Assumption (U1) is consistent with risk aversion and
financial constraints. Assumption (U2) ensures that some types have an incentive to
participate and that the equilibrium bids are bounded. There may be atoms in prefer-
ences since u (·,θ ) could be constant over an interval inΘ, or there may simply be atoms
in Θ; our model is general enough to accommodate many scenarios.

Bidders’ financial constraints fit easily into our model. Suppose u (x ;θ ) = θ1 −
c (x ,θ ), where θ1 is the valuation and c (·,θ ) is a strictly increasing and convex cost-of-
expenditure function.23 Allowing Θ to be arbitrary enables us to capture different as-
pects of financial constraints such as the size of cash holdings and the terms of credit
lines. For instance, suppose that

c (x ,θ ) =







x if x ≤ θ2

θ2+(x −θ2) [1+θ3] if θ2 < x ≤ θ2+θ4

θ2+θ4 [1+θ3]+ (x −θ2−θ4) [1+θ3+θ5] if x >θ2+θ4.

A buyer of type θ has a valuation θ1 and cash holdings of θ2. He can borrow up to θ4

at the interest rate θ3, and he faces a higher interest rate of θ3+ θ5 when exceeding the

21Holt (1980), Maskin and Riley (1984), Matthews (1983, 1987) and Riley and Samuelson (1981) are some
of the major theoretical contributions. Kagel (1995) discusses the possible role of risk aversion in explaining
certain anomalies in auction experiments.

22See Benoît and Krishna (2001), Che and Gale (1996, 1998), Fang and Perreiras (2003), Laffont and Robert
(1996) Maskin (2000), Rhodes-Kropf and Viswanathan (forthcoming), and Zheng (2001).

23As noted, Che and Gale (1998) considered a case in which Θ was two-dimensional, with u (x ;θ ) = θ1−
c (x ,θ2); they made several additional assumptions.
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credit limit, θ4. This example allows for non-nested constraints as a buyer could face
a tighter constraint than other buyers do in one dimension (e.g., the size of the credit
line), but a looser constraint in another (e.g., the interest rate).

Our model also allows for bidder risk aversion with more complex risk characteris-
tics than is the case in existing models. Bidders may differ in both valuations and the
degree of risk aversion, as with the CARA utility function:

u (x ;θ ) = 1−exp[−θ2(θ1−x )],

where θ1 represents the valuation and θ2 represents the degree of absolute risk aversion.
More general preferences are also possible, with non-CARA utility functions and a gen-
eral θ . For example, bidders could differ in their attitudes toward risk, and risk aversion
could vary with income. There could also be financial constraints in addition to risk
aversion.

The revenue comparisons rely on certain properties of symmetric equilibria in each
auction form, given (U1)–(U2). We begin with a second-price auction. In a symmetric
equilibrium of a second-price auction, it is optimal for a bidder to raise b until u (b ;θ ) =
0 since he gets utility of zero if he does not win. More precisely, it is a weakly dominant
strategy for a bidder of type θ to bid24

Bs (θ ) :=max{x | u (x ;θ )≥ 0}. (10)

Given (U2),Bs is bounded since the supremum bid is b s := supθ∈Θ Bs (θ ) < K . In fact,
the next lemma shows that this is the unique symmetric equilibrium strategy. Moreover,
(A1) holds since each equilibrium bid, b ∈Bs , is a best response for a benchmark bidder
of type v =b . To apply our methodology, we construct the mappingφs such thatφs (b ) =
b for each b ∈Bs . Withφs constructed this way, (A2) holds.

LEMMA 3. Assume (U1)–(U2) hold. In any symmetric equilibrium of a second-price auc-
tion, each bidder bids according to the strategy Bs (·) with probability one. In addition,
withφs (b ) =b for all b ∈Bs , (A2) holds, and Fs (v ) = Pr{Bs (θ )≤ v }, for all v ∈V .

For a first-price auction, we assume existence of a symmetric equilibrium in pure
strategies in which a bidder with θ ∈Θ bids B f (θ ). While assuming existence of a sym-
metric equilibrium is a restriction, any mixed-strategy equilibrium can essentially be
rendered pure by introducing artificial types with the same preferences as existing types
that employ mixed strategies. That is, one can generate the same distribution of bids in
a pure-strategy equilibrium with artificial types as in the original mixed-strategy equi-
librium.25 In that sense, our comparison applies to a general distribution that could

24The maximum is well defined, given continuity of u (·;θ ).
25Let Θm be the set of types playing mixed strategies in the symmetric equilibrium. For each θ ∈Θm , let
Bθ denote the support of bids for that type. Now augment the types for θ ∈ Θm . Specifically, create types
of the form (θ ,b ), with b ∈Bθ , such that the distribution of types coincides with the distribution of bids in
the original equilibrium. It is now a symmetric pure-strategy equilibrium for each θ ∈ Θ \Θm to make its
original equilibrium bid and for each (θ ,b ), with θ ∈Θm and b ∈Bθ , to bid b . This pure-strategy equilib-
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involve atoms (in the usual sense) and multiple dimensions. While equilibria of first-
price auctions cannot be explicitly characterized, we can establish several properties of
the equilibria that help us to apply Theorem 1.

LEMMA 4. Given (U1)–(U2), any symmetric equilibrium of a first-price auction has the
following properties. (a) infB f = infBs =: b , Pr{B f (θ ) ≤ b} = Pr{Bs (θ ) ≤ b}, and b f :=
supB f < K . (b)B f is an interval and it has no mass points at any b > b . (c) There exist
v̂ ≥ b and v̂ ′ ≥ v̂ such that v < b implies X f (v ) = 0 and β f (v ) = ;; v ∈ (b , v̂ ) implies
BR f (v ) = ;; v ∈ (v̂ , v̂ ′) implies β f (v ) \ {b} 6= ;; and v > v̂ ′ implies BR f (v ) = {b f }. (d) The
set β f (V ) is nonempty, soφ f is well-defined. (e) (A2) holds.

Our revenue comparison then follows.

PROPOSITION 2. Given (U1)–(U2), a symmetric equilibrium of a first-price auction yields
(weakly) higher expected revenue than the symmetric equilibrium of the second-price
auction in (10). The revenue ranking is strict if b s > b and u (·,θ ) is strictly concave for
all θ ∈Θ.

PROOF. Fix symmetric equilibria for the first-price auction (M = f ) and the second-
price auction (M = s ). It is straightforward to establish that Π f (0) = Πs (0) = 0 (just as
in the proof of Proposition 2). Lemmas 3 and 4 have shown that (A1) and (A2) hold in
the equilibrium of a second-price auction and that (A2) holds in the equilibrium of a
first-price auction. Hence, by Theorem 1, to get the revenue ranking it suffices to show
that Ff (v ∗)≤ Fs (v ∗) for every v ∗ ∈ V . Note that Fs (v ∗) = Pr{Bs (θ )≤ v ∗} for each v ∗ ∈ V ,
by Lemma 3.

Now turn to the first-price auction. Once again, β f (·) is nondecreasing, by Lemma 1,
and it is bounded above by K (by Lemma 4(a)), so β f (v ) is a singleton for almost every v
for which it is nonempty. By Lemma 4(c),β f (v ) 6= ; for every v ∈ (v̂ , v̂ ′), soβ f (v ) contains
a unique best response for almost every v ∈ (v̂ , v̂ ′). Fix a valuation, v ∗ ∈ (v̂ , v̂ ′), with a
unique best response, which we denote b f (v ∗). Then,

Ff (v ∗) = Pr{φ f (B f (θ ))≤ v ∗}= Pr{B f (θ )≤b f (v ∗)}= Pr{B f (θ )<b f (v ∗)},

where the first and the second equalities follow from (A.6), and the last follows from
there being no mass at b f (v ∗) > b (by Lemma 4(b)). Hence, a sufficient condition for
Ff (v ∗)≤ Fs (v ∗) to hold is that Bs (θ )≤ v ∗ whenever B f (θ )<b ∗ :=b f (v ∗).

Fix θ such that B f (θ ) =: b < b ∗. We will show that this implies Bs (θ ) ≤ v ∗. Ob-
serve first that v ∗ ∈ (v̂ , v̂ ′) and v̂ ≥ b . This means that v ∗ > b ∗ and x f (b ∗) > 0 since a
benchmark bidder of type v ∗ > b can get a strictly positive expected payoff by bidding

rium has the same equilibrium bid distribution and the same expected revenue as the original equilibrium.
Meanwhile, this change to the type space would have no effect on the equilibrium of the second-price auc-
tion since the last component is not payoff-relevant. Hence, the revenue comparison between the first-
and second-price auctions for the original type space follows trivially from the revenue comparison for the
extended type space, which is established in Proposition 2.
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b ′ ∈ (b , v ∗). If a type-θ actual bidder finds it optimal to bid b in a first-price auction,
then

x f (b )u (b ;θ )≥ x f (b ∗)u (b ∗;θ ). (11)

Meanwhile, a type-v ∗ benchmark bidder has b ∗ as a best response, so

x f (b ∗)[v ∗−b ∗]≥ x f (b )[v ∗−b ]. (12)

There are now two subcases. Suppose, first, that either x f (b ) = 0 or u (b ∗;θ ) ≤ 0. In
this case, (11) implies u (v ∗;θ )< u (b ∗;θ )≤ 0 since v ∗ > b ∗. Hence, Bs (θ )≤ v ∗, as was to
be shown.

Now suppose that x f (b )> 0 and u (b ∗;θ )> 0. Multiplying the respective sides of (11)
and (12), and dividing through by x f (b )x f (b ∗), we get

u (b ;θ )[v ∗−b ∗]≥ u (b ∗;θ )[v ∗−b ]. (13)

Concavity of u (·;θ ) implies

u (b ;θ )≤ u (b ∗;θ )+u 1(b ∗;θ )[b −b ∗], (14)

where u 1(y ;θ ) denotes an arbitrary sub-derivative with respect to the first argument,
evaluated at (y ;θ ). Substituting this bound for u (b ;θ ) into (13) yields

[u (b ∗;θ )+u 1(b ∗;θ )(v ∗−b ∗)](b ∗−b )≤ 0. (15)

Concavity of u (·;θ ) also gives

u (v ∗;θ )≤ u (b ∗;θ )+u 1(b ∗;θ )(v ∗−b ∗). (16)

Since b < b ∗, (15) then implies that u (v ∗;θ ) ≤ 0, which again means Bs (θ ) ≤ v ∗. We
conclude that Ff (v ∗)≤ Fs (v ∗) for almost every v ∗ ∈ (v̂ , v̂ ′).

Now consider any v ∗ > v̂ ′. Clearly,

Ff (v ∗)≤ 1= Pr{B f (θ )≤b f }.

Again, it suffices to show that Bs (θ )≤ v ∗ whenever B f (θ )≤b f . Since BR f (v ∗) = {b f }, by
Lemma 4(c), and v ∗ >b f , the same argument as before proves the result.

We next consider v ∗ ∈ (b , v̂ ). By Lemma 4(c), v ∈ (b , v ∗] implies BR f (v ) = ;, so v 6∈ V f .
Hence, Ff (v ∗) = Ff (b ). In addition, if this region exists, there must be a mass point at b ,
implying b ∈B f . Furthermore, a benchmark bidder of type v = b has β f (v ) = {b}. This
means that, for any v ∗ ∈ (b , v̂ ), we have

Ff (v ∗) = Ff (b ) = Pr{B f (θ )≤b},

where the last equality follows from (A.5). But, Lemma 4(a) implies Pr{B f (θ ) ≤ b} =
Pr{Bs (θ )≤b}, so

Ff (v ∗) = Pr{Bs (θ )≤b}= Fs (b )≤ Fs (v ∗),
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where the inequality follows from v ∗ >b .
Finally, for almost every v ∗ ∈ [0,b ), Lemmas 4(c) and 4(e) imply that Ff (v ∗) =

X f (v ∗) = 0. Since Fs (v ∗)≥ 0, we have Ff (v ∗)≤ Fs (v ∗).
The analysis has shown that Ff (v ∗)≤ Fs (v ∗) for almost every v ∗ ∈V . Since Fs is right

continuous, Fs (v ) ≥ Ff (v ) for every v ∈ V , as was to be shown. The second statement
(the strict ranking) follows since if b s > b , then b f > b , and strict concavity causes (14)
and the corresponding inequality for v ∗ > v̂ ′ to be strict, proving that Ff (v )< Fs (v ) for a
positive measure of v . �

The proof has established a stochastic dominance relationship between the induced
distributions (i.e., Ff (·) ≤ Fs (·)), which has an intuitive interpretation: a fictitious risk-
neutral bidder would be more likely to lose to bidders who are risk-averse (or financially
constrained) in a first-price auction than in a second-price auction. This intuition par-
allels the familiar one that risk aversion makes bidders more aggressive in a first-price
auction than in a second-price auction.26

REMARK (Payoff nonequivalence). The bidders themselves may have a strict preference
for one auction form over another. To see this easily, suppose that Θ contains a
risk-neutral type. Such a bidder would win with a lower probability in a first-price
auction than in a second-price auction (see the proof of Proposition 2), so Π f (v ) =
∫ v

0
Ff (z )n−1d z ≤ Πs (v ) =

∫ v

0
Fs (z )n−1d z . This payoff nonequivalence holds even when

all types have CARA utility if there is heterogeneity in the coefficient of absolute risk
aversion.27

3.3 Risk averse bidders with non-expected utility preferences

To this point we have assumed that bidders are expected utility maximizers. We now
show that our ranking of first- and second-price auctions continues to hold for risk-
averse bidders who are not expected utility maximizers.28 This robustness is important
given the well-documented violations of the predictions of the expected utility model.

The result is shown using the Gateaux differentiable preference functional, which
replaces the independence axiom with a minimal condition of smoothness. Gateaux
differentiability does not require continuity of the preference functional in the distribu-
tion, and is thus weaker than Fréchet differentiability (see Machina 1982). It encom-
passes many well-known non-expected utility preferences, such as those satisfying the

26With multi-dimensional types, the standard intuition may not work in an absolute sense since risk
aversion in our general form may affect the bidding in a second-price auction.

27Matthews (1987) found payoff equivalence for bidders with identical CARA utility. The reason for
nonequivalence here is consistent with the logic for nonequivalence with (one-dimensional) non-CARA
preferences there since bidders with different valuations may have different levels of absolute risk aversion
in this latter case.

28Auctions in which bidders are not expected utility maximizers have been studied by Karni and Safra
(1989), and Neilson (1994), for example. Those papers compare second-price and ascending-bid auctions.
In both cases, private information is one-dimensional, and the prize is a lottery. The issues they study do
not arise in our setting, where the object’s value is deterministic. Volij (2002) found payoff equivalence
using the dual theory of choice model.
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betweenness axiom (Dekel 1986) and rank-dependent expected utility (Quiggin 1982
and Wakker 1994), given some additional restrictions.29

To begin, let an actual bidder with type θ = (θ1,θ2) ∈ [0, 1]×Θ2 =: Θ earn a random
net surplus Y = θ1 · I{win}− c (Z ,θ2) where Z is a random variable representing the pay-
ment and I{win} is an indicator function that equals 1 when the bid wins, and zero other-
wise; c (·,θ2) is increasing and continuous, with c (0,θ2) = 0; andΘ2 is arbitrary. We make
no particular assumptions concerning θ except that, for simplicity, θ1 does not have an
atom at zero. Let ∆([0, 1]) denote the set of all probability distributions of the net sur-
plus. We assume that the type-θ bidder’s preference functional, U (·;θ2) :∆([0, 1]) 7→ R,
is Gateaux differentiable: For each F ∈ ∆([0, 1]), there exists ξ(·,F ;θ2) : [0, 1] 7→ R such
that, ∀G ∈∆([0, 1]) and α∈ [0, 1],

U ((1−α)F +αG ;θ2)−U (F ;θ2) =α

∫

[0,1]

ξ(·,F ;θ2)d [G −F ]+o(α).

Note that this functional collapses to an expected utility representation if the Gateaux
derivative, ξ(·,F ;θ2), does not depend on F .30 In general, its dependence on F
means that the preferences do not conform to the expected utility representation, al-
though such a representation is valid for local directional shifts of the distribution.
With Gateaux differentiable preferences, monotonicity of preferences and risk aversion
are represented by ξ(·,F ;θ2) being strictly increasing and concave, respectively, for all
F ∈∆([0, 1]) (see Chew and Mao 1995).

The monotonicity of ξ(·,F ;θ2) means that an actual bidder prefers a (first-order)
stochastically dominating shift of the distribution of Y . This implies that the equilibrium
of the second-price auction takes the same form as before. That is, a type-θ bidder bids

Bs (θ ) =max{x | θ1 ≥ c (x ,θ2)},

which is equivalent to (10), thus satisfying (A1)–(A2). The associated random payoff
stochastically dominates the random payoff associated with any other bid. A symmetric
(pure-strategy) equilibrium of a first-price auction, assuming it exists, is characterized
as in Lemma 4.

The benchmark bidder has the same characteristics as in the previous section (i.e.,
a risk-neutral, expected-utility maximizer with no financial constraints). The previous
revenue ranking then extends to this environment.

PROPOSITION 3. Given a Gateaux derivative ξ(·,F ;θ2) that is strictly increasing and
(weakly) concave for all (F ,θ2) ∈ ∆([0, 1])×Θ2, a symmetric equilibrium of a first-price

29The betweenness axiom gives rise to an implicit function representation, which is Gateaux differen-
tiable if the partial derivative of the equation with respect to its second argument is bounded. The rank-
dependent expected utility representation is Gateaux differentiable if its probability transformation func-
tion is differentiable. See Chew and Mao (1995) for details.

30The current framework does not include the one in Section 3.2 as a special case, however. In the current
approach, we are treating the good and the money as perfect substitutes, which is why we focus simply on
the stream of “net surplus." We do not impose such a condition in Section 3.2.
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auction yields (weakly) higher expected revenue than the symmetric equilibrium of the
second-price auction in (10). The revenue ranking is strict if ξ(·,F ;θ2) is strictly concave
for all (F ,θ2).

PROOF. The characterizations of Lemmas 3 and 4 follow, except that we now have b = 0,
and there exists v̂ ′ such that β f (v ) \ {b} 6= ; if v ∈ (0, v̂ ′) and β f (v ) = {b f } if v > v̂ ′. (Since
θ1 does not have an atom at 0, B f forms an open interval and has no atoms, which
implies that BR f (v ) is nonempty for all v ; the specific characterization follows from the
proof of Lemma 4(c).) Since the proof mirrors that of Proposition 2, we simply highlight
the differences.

Let B f (θ ) denote the equilibrium strategy under a first-price auction. As in the proof
of Proposition 2, the weak ranking holds if the following condition holds: For each v ∗ ∈
(0, v̂ ′) such that β f (v ∗) has a singleton element, b f (v ∗), B f (θ ) < b f (v ∗) implies Bs (θ ) ≤
v ∗⇔ θ1 ≤ c (v ∗,θ2).31

As before, fix any θ = (θ1,θ2) such that B f (θ ) =: b < b f (v ∗) =: b ∗, and let x ∗ := x f (b ∗)
and x := x f (b ). Then, incentive compatibility for a type-v ∗ benchmark bidder implies

x ∗[v ∗−b ∗]≥ x [v ∗−b ]. (17)

Next, consider an actual bidder with type θ , and let Fb ′ denote the distribution of his
surplus when he makes some bid b ′. Since B f (θ ) = b , a bid of b must be (weakly) pre-
ferred to any other single bid or any mixed strategy over bids.

Suppose that this bidder randomizes between b and b ∗ with probabilities 1−α and
α, respectively. His payoff is U ((1−α)Fb +αFb ∗ ;θ2). Since bidding b with probability
one is optimal, we have

0≥
∂U ((1−α)Fb +αFb ∗ ;θ2)

∂ α

�

�

�

�

α=0

=

∫

[0,1]

ξ(·,Fb ;θ2)d [Fb ∗ −Fb ]

= x ∗ξ(θ1− c (b ∗,θ2),Fb ;θ2)+ (1−x ∗)ξ(0,Fb ;θ2)

− [xξ(θ1− c (b ,θ2),Fb ;θ2)+ (1−x )ξ(0,Fb ;θ2)], (18)

where the first equality follows from Gateaux differentiability and the second follows
from the fact that bothFb andFb ∗ involve two-point distributions. We can rewrite (18)
as

x [ξ(θ1− c (b ,θ2),Fb ;θ2)−ξ(0,Fb ;θ2)]≥ x ∗[ξ(θ1− c (b ∗,θ2),Fb ;θ2)−ξ(0,Fb ;θ2)]. (19)

As in the proof of Proposition 2, combining (17), (19), and concavity of ξ(·,Fb ;θ2)
gives

[ξ(θ1−c (b ∗,θ2),Fb ;θ2)+ξ1(θ1−c (b ∗,θ2),Fb ;θ2)(v ∗−b ∗)−ξ(0,Fb ;θ2)](b ∗−b )≤ 0. (20)

31Recall that almost every v ∈V f has a singleton element.
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By concavity of ξ(·,Fb ;θ2),

ξ(θ1− c (v ∗,θ2),Fb ;θ2)≤ ξ(θ1− c (b ∗,θ2),Fb ;θ2)+ξ1(θ1− c (b ∗,θ2),Fb ;θ2)(v ∗−b ∗),

so (20) implies

ξ(θ1− c (v ∗,θ2),Fb ;θ2)≤ ξ(0,Fb ;θ2),

from which it follows that

θ1 ≤ c (v ∗,θ2),

or Bs (θ ) ≤ v ∗, as was to be shown. This gives the weak ranking. Strict concavity makes
the inequalities strict, resulting in a strict ranking. �

4. CONCLUSION

This paper develops a methodology for characterizing a seller’s expected revenue when
bidders’ types come from an arbitrary distribution. In particular, types may be multi-
dimensional, with mass points and gaps in the distribution, and the support of equilib-
rium bids may have mass points and gaps itself. The revenue characterization result is
used to generalize existing revenue equivalence results and to show that first-price auc-
tions revenue-dominate second-price auctions when bidders are risk averse and face
financial constraints.

By considering arbitrary distributions, this paper greatly expands the range of cases
for which revenue comparisons can be made. Our method may therefore have useful
applications for other cases with multidimensional types and general forms of nonlinear
payoffs.

APPENDIX

PROOF OF LEMMA 2. To prove property (a), suppose that BM has a mass point at b ∈
BM , with xM (b+)− xM (b−) =: mb > 0, where xM (b−) and xM (b+) denote the left and
right limit of xM (·) at b , respectively. Consider a benchmark bidder with valuation v ∈V .
By raising the bid infinitesimally above b , a bidder obtains an expected payoff of

πM (b+, v ) = xM (b−)(v −E[τw (b , B (1:n−1)
M ) | B (1:n−1)

M <b ])+mb (v −τw (b ,b ))

− [1−xM (b+)]E[τl (b , B (1:n−1)
M ) | B (1:n−1)

M >b ], (A.1)

where B (1:n−1)
M is the first order statistic of n −1 independent draws of BM . (The contin-

uous payments property gives τk (b+, B (1:n−1)
M ) = τk (b , B (1:n−1)

M ) for k = w , l .) A bid of b
would give the benchmark bidder an expected payoff of

πM (b ,v ) = xM (b−)(v −E[τw (b , B (1:n−1)
M ) | B (1:n−1)

M <b ])+mbρb (v −τw (b ,b ))

−mb (1−ρb )τl (b ,b )− [1−xM (b+)]E[τl (b , B (1:n−1)
M ) | B (1:n−1)

M >b ], (A.2)



114 Che and Gale Theoretical Economics 1 (2006)

where ρb denotes the probability of winning conditional on bidding b and tying for the
high bid (i.e., when (b i ,bm (i )) = (b ,b )). The expected gain from raising b i above b is
therefore

πM (b+, v )−πM (b , v ) =mb (1−ρb ) [v −δM (b )] . (A.3)

Likewise, we have

πM (b ,v )−πM (b−, v ) =mbρb [v −δM (b )] , (A.4)

for b > 0.
Equations (A.3) and (A.4) imply that a benchmark bidder with a best response of

b must have a valuation v = δM (b ); otherwise, the expected payoff would jump when
raising or lowering the bid marginally.32 Since no other actual type can contribute to the
mass, we must have v ∈Θ, as was claimed in (a).

To prove property (b), fix v ′, v ∈ Θ with v ′ > v . Lemma 1 shows that we must have
b ′ ≥ b if b ′ ∈ βM (v ′) and b ∈ βM (v ). If b ′ = b , an interval of valuations must have a best
response of b , but this contradicts (a).33 Hence, we must have b ′ >b . �

PROOF OF LEMMA 3. Fix a constant, ε > 0. A bidder ε-overbids if she bids more than
Bs (θ ) + ε when her type is θ ∈ Θ; she ε-underbids if she bids less than Bs (θ )− ε. To
prove uniqueness, suppose that there exists a symmetric equilibrium in which a bid-
der ε-overbids or ε-underbids with strictly positive probability. In particular, suppose
that the probability of ε-overbidding is positive. Let B + be the support of equilib-

rium bids that entail ε-overbidding, and let b
+

:= supB +.34 Then, for a fixed δ < ε,

a given bidder ε-overbids in (b
+
− δ,b

+
] with positive probability. Since all bidders

adopt the same strategy, the highest rival bid lies in that same interval with positive
probability. By deviating to Bs (·)whenever she would have ε-overbid, a bidder is strictly

better off. This is immediate if B + has a mass point at b
+

, since ε-overbidding at b
+

would result in a positive probability of winning, which would give the bidder a payoff

of u (b
+

,θ ) ≤ u (Bs (θ ) + ε,θ ) < u (Bs (θ ),θ ) = 0. If B + does not have a mass point at

b
+

, then b
+
= supB + means that the highest rival bid lies in any nonempty subset of

(b
+
−δ,b

+
)with positive probability. Then, deviating to Bs (·)whenever she would have

ε-overbid in (b
+
− 1

2δ,b
+
), say, is strictly profitable. The argument is analogous when

the probability of ε-underbidding is positive.
To prove the second statement, note that almost every v ∈ V is not a mass point in

Bs . Fix any such v . Since it is a best response to bid v , a benchmark bidder with v wins

32When b = 0, we have τw (0, 0) = τl (0, 0) = 0, so δM (0) = 0. Given (A.3), b = 0 implies v = 0, so v = δM (b )
again.

33Following footnote 7, if v, v ′ ∈ Θ with v < v ′, there must be atoms at v and v ′ or a positive measure of
types in (v, v ′)∩Θ.

34Let P+δ (b ) be the probability that a type-θ bidder bids b ′ ∈ [b ,b+δ) such that b ′ ≥ Bs (θ )+εwhen θ ∈Θ,
and let P−δ (b ) be the probability that b ′ ∈ (b −δ,b ] such that b ′ ≥ Bs (θ )+εwhen θ ∈Θ. Then

B + := {b | P−δ (b )> 0 and P+δ (b )> 0,∀δ> 0}.
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with probability Xs (v ) = (Pr{Bs ≤ v })n−1. Meanwhile, sinceφs (Bs ) = Bs , we have

Fs (v ) = Pr{φs (Bs )≤ v }= Pr{Bs ≤ v },

where the first equality follows from (2). Combining the two preceding facts, we have
Xs (v ) = Fs (v )n−1, proving (A2). Further, since Bs = Bs (θ ) in the unique symmetric equi-
librium, we have Fs (v ) = Pr{Bs (θ )≤ v }, for all v ∈V . �

PROOF OF LEMMA 4. The first part of (a) claims that b f = b s , where b M := infBM for
M = f , s . Suppose that b s < b f instead. Then, any type θ with Bs (θ ) ∈ (b s ,b f ) could get
a strictly positive expected payoff in a first-price auction by bidding Bs (θ )− ε > b s , for
small ε > 0. This means that b f ≤ b s , which gives a contradiction. Now suppose that
b f < b s . Then, the equilibrium payoff for every θ ∈Θmust be bounded away from zero
in the first-price auction. This would mean that there is a mass point at b f , yet those
types putting mass at b f could profitably deviate by raising the mass slightly above b f .
(The deviation raises the probability of winning discontinuously but the (strictly pos-
itive) payoff upon winning decreases continuously, by (U1).) Hence, we have a con-
tradiction, so b f = b s . In addition, the same actual types bid b in both formats, so

Pr{B f (θ )≤b}= Pr{Bs (θ )≤b}. The last claim in (a) holds since b f ≥ K would mean that
a positive measure of θ has a non-zero probability of winning with a bid that entails a
strictly negative payoff, a situation avoided by bidding zero.

We next prove (b). It is easy to see thatB f must be an interval. If there were a gap in
B f , any bid within ε of the supremum of the gap could profitably be lowered to ε above
the infimum of the gap, for small ε > 0. (The drop in the probability of winning would
be of order ε, but the increase in the payoff upon winning is roughly proportional to the
length of the gap.) Consequently, there cannot be a gap inB f .

To see that there cannot be a mass point above b , suppose that the equilibrium strat-
egy called for a particular bid, b > b , to be submitted with positive probability. That bid
exceeds the infimum, so it wins with strictly positive probability, and almost every type
that bids b has u (b ;θ ) > 0.35 Since the winning probability jumps at b and u (·,θ ) is
continuous, a profitable deviation exists when a bidder draws one of these types. Thus,
there cannot be a mass point at any b >b in equilibrium.

In order to prove (c) we make several preliminary observations. First, a benchmark
bidder with v < b gets a negative payoff if she wins. This means that X f (v ) = 0 and
β f (v ) =BR f (v )∩B f = ; for v <b . Second, for all b >b f and all v , π f (b , v )−π f (b f , v ) =
b f −b < 0 since x f (b ) = x f (b f ) = 1, given the absence of mass points shown in (b). Third,
for any v > b and b ≤ b , there exists b ′ > b such that π(b ′, v ) > π(b , v ).36 These obser-
vations imply that, for any v > b , whenever BR f (v ) is non-empty it must be a subset of
(b ,b f ]. (That is, for each v > b , either BR f (v ) = ; or BR f (v )∩ (b ,b f ] 6= ;.) Since π f (b , v )
has increasing differences in (b ; v ) and is continuous in b for b ∈ (b ,b f ], we have two ad-
ditional observations: (i) if BR f (v )∩ (b ,b f ] 6= ;, then BR f (v ′)∩ (b ,b f ] 6= ; for v ′ > v ; and

35If not, a slightly lower bid would win with positive probability, but the payoff upon winning would be
strictly greater, so the expected payoff from this lower bid would be strictly positive.

36This holds since b ≤ b implies that either x f (b ) = 0 or else b = b and there is a mass point at b ; raising
the bid slightly above b is profitable in the latter case.
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(ii) if BR f (v )∩(b ,b f ) 6= ; and BR f (v ′)∩(b ,b f ) 6= ;, for v ′ > v , then BR f (v ′′)∩(b ,b f ) 6= ; for
all v ′′ ∈ (v, v ′). The earlier observations, combined with (i), imply that there exists v̂ ≥ b
such that BR f (v ) is empty for v ∈ (b , v̂ ) and BR f (v )∩ (b ,b f ] 6= ; for v > v̂ .37 This latter
conclusion, along with (ii), implies that there exists v̂ ′ ≥ v̂ such that BR f (v )∩ (b ,b f ) 6= ;
if v ∈ (v̂ , v̂ ′) and BR f (v ) = {b f } if v > v̂ ′. Since (b ,b f ) ⊂B f , β f (v ) \ {b} 6= ; if v ∈ (v̂ , v̂ ′),
so the proof is complete.

We next prove (d). There are two cases, depending on whether there is a mass point
at b . If there is a mass point, then b ∈B f and BR f (b ) contains b , so β f (v ) 6= ; for v = b .
If there is not a mass point at b , any v ∈ (b ,x f (b f )/x ′f (b f −)+b f ) has BR f (v )∩ (b ,b f ) 6= ;,
where x ′f (b f −) denotes a left-hand derivative of x f at b f , which is positive, by (b). Since

(b ,b f )⊂B f , β f (v ) 6= ; for such v , which completes the proof.
Last, we turn to (e). Fix any v < b . By (c), X f (v ) = 0 and β f (v ) = BR f (v )∩B f = ;.

The latter fact means that v ′ /∈ V f = φM (B f ) if v ′ ≤ v . Hence, Ff (v )n−1 = Pr{φM (B f ) ≤
v }n−1 = 0=X f (v ).

Now consider any v ∈ (b , v̂ ). Then, (c) implies that BR f (v ) = ;, which can only arise
when X f (v ) = (Pr{B f (θ ) ≤ b})n−1 and b is a mass point. The latter fact implies b ∈B f .
Further, by (c), BR f (v ′) = ; for each v ′ ∈ (b , v ], so v ′ does not belong to the support of Vf .
It follows that Ff (v ) = Ff (b ). A benchmark bidder of type v =b hasφ−1

f (v ) =β f (v ) = {b}.
Hence,

Ff (b ) = Pr{φ f (B f (θ ))≤b}= Pr{B f (θ )≤b}. (A.5)

Combining the results, we have

X f (v ) = (Pr{B f (θ )≤b})n−1 = Ff (b )n−1 = Ff (v )n−1,

as was to be shown.
Next consider (v̂ , v̂ ′). By (c), β f (v ) \ {b} 6= ; for each v ∈ (v̂ , v̂ ′). Since β f (·) is nonde-

creasing, by Lemma 1, and is bounded above by K (see (a)), β f (v ) collapses to a single-
ton, say {b f (v )}, for almost every v ∈ (v̂ , v̂ ′). Hence, for such v ,

X f (v ) = x f (b f (v )) = (Pr{B f (θ )≤b f (v )})n−1 = (Pr{φ f (B f (θ ))≤ v })n−1 = Ff (v )n−1. (A.6)

The first and last equalities follow from the respective definitions, the second follows
from the fact that there is no mass at b f (v )∈B f \{b}, and the third equality is immediate
if b f (·) is strictly increasing at v , or else it follows from the fact that there is no mass at
b f (v ).

Finally, consider any v > v̂ ′. Since there is no mass point at b f (by (b)), we have
BR f (v ) = {b f }. It follows that X f (v ) = x f (b f ) = 1. Meanwhile, φ f (B f ) ≤ v̂ ′, ∀B f ∈ B f ,
so Ff (v ) = 1 for v > v̂ ′. Consequently, X f (v ) = Ff (v )n−1 for all v > v̂ ′. Since we have
established X f (v ) = Ff (v )n−1 for almost every v ∈V , the proof is complete. �
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